Enums

DatasetType

class src.enums.datasets.DatasetType(value)[source]

Bases: str, Enum

This enum is used to specify what type of dataset to use,

DYNAMIC: str = 'dynamic_general'
MULTI_SECOND_LEVEL_ALL_BASED: str = 'm2_general'
MULTI_TOP_LEVEL_ALL_BASED: str = 'm1_general'
MULTI_TOP_LEVEL_ARTICLE_BASED: str = 'm1_article'
MULTI_TOP_LEVEL_ARTICLE_SPLIT: str = 'm1_article_split'
MULTI_TOP_LEVEL_DESCRIPTION_BASED: str = 'm1_description'
MULTI_TOP_LEVEL_MOTIVATION_BASED: str = 'm1_motivation'
MULTI_TOP_LEVEL_SHORT_TITLE_BASED: str = 'm1_shorttitle'
SINGLE_BASIC: str = ''
SINGLE_TOP_LEVEL_ALL_BASED: str = 's1_general'
SUMMARY_STATISTIC_DATASET: str = 'summary_stat_dataset'
UNPROCESSED: str = 'mirror'
classmethod _list()[source]

internal classmethod that allows us to retrieve all possible datasets :return:

static get_from_prefix(model_type: str)[source]

this function allows us to retrieve only the models compliant with the prefix filter

Parameters:

model_type – the string prefix to filter the models with

Returns:

a list with models that comply with the filter

static get_multilevel_datasets(level: int = 1)[source]

this function allows us to retrieve only the multilabel datasets of a specific level

Parameters:

level – the label level you want to retrieve datasets for

Returns:

a list with dataset that comply with the filter

get_single_level_datasets()[source]

DecisionQuery

class src.enums.decision.DecisionQuery(value)[source]

Bases: str, Enum

This enum is used to identify what type of query to run

ALL = 'all'
ANNOTATED = 'annotated'
static match(config: DataModelConfig, value: DecisionQuery)[source]

this function allows us to verify the provided input and return the correct query

Parameters:
  • config – the global configuration object

  • value – the enum value that is used.

Returns:

format-able query in string format

Graph

class src.enums.graph.GraphType(value)[source]

Bases: str, Enum

This enum contains the predefined graph suffixes that can be used to save to a certain sparql graph

MODEL_ANNOTATION = 'model_annotation'
MODEL_INFORMATION = 'model_information'
TESTING = 'testing_annotation'
USER_ANNOTATION = 'user_annotation'
static match(config: DataModelConfig, value: GraphType)[source]

this function returns the config value for the chosen enum type :param config: :param value: :return:

ModelType

class src.enums.models.ModelType(value)[source]

Bases: str, Enum

This enum is used to identify what model type/flavour you are running.

DYNAMIC_TOPIC_MODEL: str = 'topic_model_dynamic'
EMBEDDING_CHILD_LABELS: str = '_embedding_child_labels'
EMBEDDING_CHUNKED: str = 'embedding_chunked'
EMBEDDING_GROUND_UP: str = '_embedding_ground_up'
EMBEDDING_GROUND_UP_GREEDY: str = '_embedding_ground_up_greedy'
EMBEDDING_REGULAR: str = 'embedding_regular'
EMBEDDING_SENTENCE: str = 'embedding_sentence'
HIERARCHIC_TOPIC_MODEL: str = 'topic_model_hierarchic'
HUGGINGFACE_MODEL: str = 'huggingface_model'
HYBRID_BASE_MODEL: str = 'hybrid_base_model'
HYBRID_SELECTIVE_MODEL: str = 'hybrid_selective_model'
REGULAR_TOPIC_MODEL: str = 'topic_model_regular'
ZEROSHOT_CHILD_LABELS: str = '_zeroshot_child_labels'
ZEROSHOT_CHUNKED: str = 'zeroshot_chunked'
ZEROSHOT_REGULAR: str = 'zeroshot_regular'
ZEROSHOT_SENTENCE: str = 'zeroshot_sentence'
classmethod _list()[source]

internal classmethod that allows us to retrieve all possible datasets :return:

static get_from_prefix(model_type: str)[source]

this function allows us to retrieve only the models compliant with the prefix filter

Parameters:

model_type – the string prefix to filter the models with

Returns:

a list with models that comply with the filter

static get_models_for_type(model_type: str)[source]

this function allows us to retrieve only the models compliant with the prefix filter

Parameters:

model_type – the string prefix to filter the models with

Returns:

a list with models that comply with the filter

EndpointType

class src.enums.request.AuthType(value)[source]

Bases: str, Enum

This enum specifies what authentication type to use on the sparql endpoint

BASIC = 'basic'
DIGEST = 'digest'
NONE = 'none'
class src.enums.request.EndpointType(value)[source]

Bases: str, Enum

This enum is used to specify what type of query you want to execute

DECISION = 'decision'
TAXONOMY = 'taxonomy'
static match(config: Config, value: EndpointType)[source]

this function allows us to verify the provided input and return the correct query

Parameters:
  • config – the global configuration object

  • value – the enum value that is used.

Returns:

the chosen endpoint url

SetfitClassifierHeads

class src.enums.setfit.SetfitClassifierHeads(value)[source]

Bases: str, Enum

This enum is used to identify what type of setfit head you want to use

DIFFERENTIABLE_MULTI_OUTPUT: str = 'differentiable_multi-output'
DIFFERENTIABLE_ONE_VS_REST: str = 'differentiable_one-vs-rest'
SKLEARN_CLASSIFIER_CHAIN: str = 'sklearn_classifier-chain'
SKLEARN_MULTI_OUTPUT: str = 'sklearn_multi-output'
SKLEARN_ONE_VS_REST: str = 'sklearn_one-vs-rest'
static get_prefixed_heads(prefix: str) list[str][source]

This function filters the setfit heads on values and returns the resulting heads

Parameters:

prefix – string to check if in head value

Returns:

filtered output as list

classmethod list()[source]
static match(config: Config, value: SetfitClassifierHeads)[source]

this function allows us to verify the provided input and return the correct query

Parameters:
  • config – the global configuration object

  • value – the enum value that is used.

Returns:

format-able query in string format

TrainingFlavours

class src.enums.supervised_flavours.TrainingFlavours(value)[source]

Bases: str, Enum

This enum is used to identify what type of training flavour you want to use.

BERT: str = 'bert'
DISTIL_BERT: str = 'distil_bert'
SETFIT: str = 'setfit'
static get_default_model_for_type(config: Config, model_flavour: TrainingFlavours) str[source]

this function checks what the chosen flavour is and returns the defaulted value from the config for the model_id

Parameters:
  • config – the global configuration object

  • model_flavour – the enum value that is used.

Returns:

format-able query in string format

TaxonomyFindTypes

class src.enums.taxonomy.TaxonomyFindTypes(value)[source]

Bases: str, Enum

This enum is used to identify what type of taxonomy find method you want to use.

LABEL: str = 'label'
URI: str = 'uri'